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Pacer diffusion in a simple liquid 

K 7hkeshwat-t: and F Ould-Kaddourts 
t International Centre for Theoretical Physics, 1-34014 llieste, Italy 

Received 1 July 1991 

AbslracL A simple model is used U) calculate the tracer diKusion in a Lennard-Jones 
tracer-solvenl syslem. The influence of the size ralio between tracer and solvent, and of 
their mass ratio on the racer diffusivity is investigated. ?he adopted model, proposed 
ty nnkeshwar et ol, is based on the idea. put fonvard ty Zwanzig, of separating the 
configurational space of a fluid system inlo a vibrational pan and a slructural pan. The 
results offer an interpretation of the molecular dynamics data showing a levelling of the 
self-diffusion coefficients for a suficienlly mall size of the tracer. The levelling off is 
explicitly related lo the lenglh parameter of u'acer-solvenl inleraclion. The calculated 
values of lhe tracer diffusion coemcients for a large nnge of its size and mass values 
are quite satisfaclory as judged by cumparison with simulation results 

1. Introduction 

In binary fluid mixtures and molten salts the two species have generally different 
diffusivity. This difference in the diffusivity can be attributed to the size ratio be- 
tween the two species, their mass ratio, and to the interaction between them. From 
experiments on real systems it is dilficult to investigate the separate influence of these 
parameters as they are changed simultaneously. Molecular dynamics (MD) calculation, 
on the other hand allows a systematic investigation of the way each of them affects 
the diffusivity. Recently, one of us has performed an extensive MD simulation for a 
tracer-solvent system [l] to investigate the influence of the size ratio between tracer 
and solvent molecules, their mass ratio on a small tracer diffusivity. The system was 
made of 100 solvent molecules and 8 solute molecules interacting through knna rd -  
Jones potentials. The main features of the MD runs for the influence of size ratio on 
tracer diffusion is a strong positive deviation from the Stokes-Einstein (SE) relation, 
which provides the following relation [I] for the the tracer diffusion 

where D and U are the diffusion coefficient and molecular diameter. The subscripts 1 
and 2 represent the solvent and solute molecules respectively. It has been found that 
D, increases as the tracer size decreases then levels off at a size-independent value. 
This levelling off takes place for a size ratio u l / u ,  between 5 and IO; so for u2 < 
$ Permanent address: Depanment of Physics, Panjab University, Chandigarh-160014, India. 
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0 . 1 ~ ~  the uacer behaves essentially as a pint-like particle in the external potential 
created by the solvent molecules. On the other hand, for the mass dependence of the 
diffusion constant, it has been found that D, increases considerably when the mass of 
the tracer is vety small compared to the solvent molecule's mass. The enhancement 
in D, increases with decrease in the size ratio. This behaviour is contrary to the 
earlier prediction [2] of the weak mass dependence of the diffusion constant. The 
aims of the present work is to investigate theoretically the influence of the size and 
mass of the small tracer on its diffusivity and to demonstrate the invalidity of the SE 
relation for small tracer. 

As is well known, the selfdiffision coefficient is a macroscopic manifestation of 
the autocorrelations of the single particle velocity in time. Much progress in under- 
standing the dynamics of dense gases and liquids has been based on the Mori-Zwanzig 
formalism, using phenomenological ansulzes and mode-coupling approximations for 
the memory functions. The approach is extensively discussed by Boon and Yip [3] 
and by Hansen and McDonald [4]. This line of approach has been Collowed [5,6] in 
theoretical work on the mass dependence of the self-diffusion coelficient of an isotope 
in a Lennard-Jones (U) system with satisfactory results as judged by comparison with 
computer simulation data; in particular, when the mass OC the tracer was higher than 
that of the solvent molecule's mass. However, no similar studies have as yet been 
reported on the tracer self-diffusion constant for sulficiently small size and mass of 
the tracer molecules. The large deviation of the tracer diffusivity from the SE relation 
is not yet understood. 

In the computer simulation runs for the tracer diffusion, it has been suggested that 
Cor a small tracer the diffision process involves jumping motion in a locally nearly 
Crozen environment. Models of liquid-state diffusion through jumping processes have 
also been developed for simple liquids. The model which we use in the present work 
belongs to this class, since it invokes a combination of vibrational and jumping motions 
of the particles. It is derived from an idea of Stillinger and Weber [7], as developed 
and exploited by Zwanzig [SI and Mohanty [9] to derive transport coefficients in cold 
dense fluids directly from the Green-Kubo time correlation formulas. The general 
picture has been clearly stated in the work of Zwanzig [SI. The model assumes 
that the configuration space of the many-body system is divided into 'cells', each 
cell being associated with a local minimum on the potential energy hypersurface. 
Some of these minima correspond to almost crystalline configurations, while others 
correspond to liquid-like configurations. The configuration of the melt remains in 
one of these minima, performing approximate harmonic vibrations about it, until it 
finds a saddle point in the potential energy surface and jumps to another cell. The 
effects of a cell jump are (i) to rearrange the equilibrium positions of the particles in 
some subvolume V' and (ii) to interrupt the oscillations within it, so that the motions 
in V' before and after the jump are uncorrelated. Similar ideas have been used by 
lhkeshwar, Singla and Pathak [lo] to develop a simple model for the calculation of 
self-diffusion of classical fluids. The model when applied to w fluids, one-component 
plasma and Yukawa fluids, provides good results Cor the diffusion constant over large 
ranges of values of system temperature and density, as judged Crom the comparison 
with simulation results. Recently, the model has been extended to be applied to the 
two-component molten-salt system by 'Ihnkeshwar and ' h i  [I l l ,  and was found to 
predict successfully the ratios of self-diffusion coefficients of the two ionic species in 
superionic conductor and normal melts. 

The main result of our application of the above model to a tracer-solvent system is 
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to explicitly relate the difference in self-diffusion coefficiena of the tracer of different 
sizes to the ‘partial tracer-solvent’ liquid structure factor. The levelling of the mcer 
diffusion constant at very small sizes is found to appear as result of ifs dependence 
on the tracer-solvent diameter, U,? = (ul  + u 2 ) / 2  and not solely on the tracer 
diameter uz. Our numerical calculations involve the use of pair potential and of pau 
distribution functions obtained from MD simulations, so that the pair potentials are 
in fact the essential input. Our calculations are successful in predicting the ratio of 
self-diffusion coefficients for the tracer of different sizes and masses in agreement 
with simulation results. 

The layout of the paper is briefly as follows In section 2 we develop the model 
to be used in the calculation of self-diffusion coefficients. The results are presented 
and discussed in section 3. Section 4 gives a short summary and some concluding 
remarks. 

2. Theory 

We consider a solvent-solute system consisting of N, solvent molecules with mass 
m, and diameter U ,  and N2 solute molecules with mass m2 and diameter u2, in a 
volume V. The self-diffusion coefficients D, and D2 are given by the Green-Kubo 
formulae 

and 

where C,(t) and C2(t) are the velocity auto-correlation functions (VACFs) of solvent 
and solute molecules. These are, respectively, given by 

and 

where w j ” ( t )  and wjz’( t )  are the velocities of the i th  s o h  ind solute molecule at 
time t ,  respectively. The angular brackets in (3) represent the ensemble average. 

The realization of Zwanzig’s model recalled in section 1 introduces a spectrum 
of oscillation frequencies to reduce the sum over coordinates in (3 )  to a sum over 
normal modes localized in the various subvolumes 1” and having a time dependence 
of the form cos(wt). One also introduces a waiting-time distribution for cell jumps 
destroying coherence in any subvolume V’, that  we take of the form [lo] SeCh(t/r). 
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With these approximation we obtain, in general, for the velocity auto-correlation 
function (VACF): 

K Tankeshrvar and F Ould-Kaddour 

1 
N C(t )  = -xcos(wt)sech(t/ .r) .  

w 

We approximate the frequency spectrum by Einstein frequencies w1 and wz for solvent 
and solute molecules, respectively, and correspondingly introduce jumping frequencies 
r;' and r;'. With these approximations (3) give 

Substituting (4) in (2) we obtain expressions for the self-diffusion constants given by 

kBT ?r 

m ,  2 
D, = --r,sech 

and 

The approximations used in deriving (4) arc ad hoc and arguable, though plausible 
[&lo]. An advantage of using the same frequencies for all the solvent or solutes 
molecules is that the parameters U,,* and .r12? can be estimated from the microscopic 
sum rules satisfied by the VACF. On comparing the short-time expansion of the inte- 
grals in (4) and (5) with the exact short-time expansion of the VACF for solvent and 
solute molecules, given by 

C(t )=1  -c , ( t * /2 ! )+c4( t4 /4! )+. . .  (6) 

we obtain the following relations 

and 

Similar expressions relate icr? and r, to the coefficients C$*) and Cr)  in the short- 
time expansion of Cz(t).  As can be seen from (4)-@), if C, = C; then D = 0, 
implying perfect crystalline behaviour. On the other hand, for C, > SC,' diffusion 
is gas-like and no backscattering process is present. 
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In order m calculate the self-diffusion constan& from (4) and (5 )  we need the 
sum rules expressions for C, and C,. They are given 16,111 by the following: 

and 

where C4(2) represents the two-body contribution to the fourth sum rule. The deriva- 
tion of the triplet contribution to this sum rule and its simplified form are given in 
the appendix. In (9) and (IO) n l  is the number density of the solvent molecules, 
gll(v) and gl,(T) are the partial solvent-solvent and solvent-solute radial distribu- 
tion functions, U 1 ' ( r )  and L112(r) are the the corresponding pair potentials and the 
notation 

d 
U 4  = P ( y )  

has been used, with the convention of summation over repeated Cartesian index a. 
The second and fourth sum rule for the solute, Cp) and Cy), follow by interchanging 
the indices 1 and 2 in (9) and (10). Clearly, each sum rule contains a contribution 
from Wre particles and a contribution from unlike particles. The expressions (9) and 
(10) are general and are applicable to any binary system of any partial concentration. 
However, in the present case we are interested in a system of infinitly dilute solution, 
where tracer molecules interact very weakly with each other than with the solvent 
molecules. F o r  such a system the above equations reduce to 

and 

and 

From the above expressions for Ci2) and Cy) one finds that these sum rules and 
hence w2 and T~ are implicitly related to the solute-solvent diameter u12 = (ul + 
u2)/2 through the solvent-solute interaction and g12(r). In the next section we 
proceed to evaluate these sum rules and hence the selfdiffusion coefficients. 
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3. Calculation and results 

K Tankeshwar and F Odd-Kaddour 

The inputs for the numerical calculation of the frequency sum rules of the VACF are 
the interatomic potentials and the partial radial distribution functions. We have used 
the JJ potential adopted by Ould-Kaddour and Barrat [I] in their (MD) work, together 
with the structure factors that they obtained by simulation. The calculated sum rules 
coefficients for the tracer are given in table 1, for various size and mass ratios. The 
w interaction energy c was kept constant for all molecules, and the units of energy, 
length and mass were respectively e, u1 and ml.  The thermodynamic state of the 
system is therefore specified by the reduced temperature T' = k,T/c and reduced 
density n' = nu:. We have also tried to estimate the tracer-tracer contribution to 
the sum rules, we find that these contributions are always less than one percent of 
the tracer-solvent contribution. 

a b l e  1. Sum-ruies memcienrs c?) and CY' of the VACF and self-diKurion mcmciem. 
D for the tracer molecule as a function of the sue ratio a21/u1 and mass ratio malm>.  
D h  are MD simulation results: also given are the jumping frequencies r-' .  

T' n' u z j u ~  mzlml  D' D h  C r )  10-3c(,2) 7-l 

0.75 0.90 1.0 lfl0 0.035 0.026 296.65 247 11.58 
0.75 0.90 0.50 1.00 0.101 0.08 244.89 4.27 19.36 
0.75 0.90 
a75  0.90 
0.75 0.90 
0.75 0.90 
0.75 0.90 
0.75 0.90 
0.75 0.92 
0.75 0.92 
0.75 0.92 
0.75 0.92 
0.75 0.92 
0.75 0.92 
0.75 0.92 
2.75 0.70 
2.75 0.77 
2.75 0.77 
275 0.77 
275 0.77 

0.50 0.70 
0.50 0.50 
0.50 0.40 
0.50 0.30 
a 50 0.10 
0.50 0.05 
0.10 1.00 
aio 0.70 
aio 050 
aio 0.40 
aio 0.25 
aio 0.10 
0.10 0.05 
1.03 1.00 
0.15 1.00 
aio 1.00 
a08 1.00 
0.05 1.00 

0.107 
O.llh 
0.122 
0,132 
0.213 
0.281 
0.283 
0.324 
0.356 

0.445 
0.626 
0.889 
0.235 
1.159 
1.314 
1.387 
1.474 

0.377 

0.08 
0.09 
0.10 
0.09 
0.13 
0.14 
0.33 
0.37 
0.35 
0.44 
0.54 
0.70 
a78 
0.24 
1.01 
1.32 
1.28 
1.45 

349.84 
48036 
612.23 

2406.50 
4793.80 

150.45 
204.09 
286.28 
362.57 
575.20 

1497.10 
3129.40 

403.99 
231.72 
228.04 
222.55 
202.81 

ni6.30 

7.50 
1259 
19.25 
3202 

254.80 
943.80 

5.52 
9 . 0  

15.60 
23.03 
51.38 

297.10 
1353.00 

9.01 
23.69 
28.60 
29.50 
25.20 

~ ~~ 

21.18 
23.13 
25.16 
27.87 
45.23 
61.02 
29.66 
32.43 
35.93 
38.70 
45.71 
67.73 

100.13 
21.37 
49.98 
55.48 
57.08 
55.28 

In the first two sets of data in table 1, The tracer mass is varied for two fixed size 
ratios U,/., = 0.5 and u?/ul = 0.1. The thermodynamic state of the pure solvent 
was chosen to be near triple point (7" = 0.75,n' = 0.85). When reducing the tracer 
size the total density had to be increased slightly, in order to keep the solvent-solvent 
radial distribution function and the solvent diffusion coefficient constant. In the third 
set of data, the tracer size is decreased keeping it mass equal to the solvent mass; the 
pure solvent was chosen to be a supercritical fluid (T" = 2.75,n' = 0.7). As stated 
earlier, the total density was slightly increased. The calculation of C r )  includes the 
triplet contribution which is discussed in the appendk. From table 1, it can be Seen 
that both C, and C, are functions of size and mass. The mass dependence of Cp) 



Tracer diffusion in a simple liquid 3355 

and Cp) for a k e d  size of tracer can exactly be derived from (12) and (14) and from 
(13) and (15), respectively, yielding the following relations: 

m,&)(u,,mz) = m,Cy(u* ,ml )  (16) 

mzCY)(~z,m,) = +,(l + ml/mz)C~)(uZ,ml). 
and 

(17) 

On the other hand, for a futed mass the size dependences of Cp) and Cp) are found 
to obey the following relations: 

cp)(uz, mz) = ( ~ t * / U I ) C ~ ) ( ~ t ,  m2) 

Cp)(uz,nEZ) = ( u , / u 1 2 ) c ~ ~ ~ ( u l ,  n+). (19) 

(18) 

and 

n e  above expressions are approximate and can be obtained from (12)-(15) by as- 
suming that the variation of g ( v / u l )  with r/ut remains unchanged with change of 
u1 to uI2, which is quite reasonable approximation. The two latter expressions (18) 
and (19) show that for a sufficiently small tracer size, C;') and Ci2) will become 
almost sue independent as ut, = (U] + uz)/2 acquires almost a constant value for 
sufficiently small value of U? compared to u t .  Therefore, one finds that the sum- 
rule coefficients are explicitly dependent on crl2 and hence will be the self-diffusion 
constant. 

3.5 

p =0.92 
r;. 
Ez.5 

. 
a" t 1.5 . 

1 . '  
0 0.2 0.4 0.6 0.6 1 0 0.2 0.4 0.6 0.8 1 

mdml  mz /m 
Figure L Tracer diffusion mefficienu as a function 
of mass ratio for a size ratio u2Jc1 = 0.5. l l e  
system lemperature and density are T' = 0.75, 
n* =0.9 solid circles, MD results; solid triangles, 
theoretical work . - . -, Stokes-Einstein behaviour 
(equation (I)). 

Flgurc 2. Same as in figure 1, but for the smaller 
size mtio u2Js1 =0.1. 
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The tracer self-diffusion coefficient D? is calculated from (9, using the numerical 
values for the sum rules from table 1. The calculated values of the self-diffusion 
mefficients along with MD values are also given in table 1. From table 1, we find that 
the absolute values of the self-diffusion are quite reasonable except for the mass ratios 
m2/m1 which are less than 0.4 corresponding to first set of data (T' = 0.75,n* = 
0.9 and u2/u1 = 0.5). The mass dependence of the self-diffusion is plotted in 
figures (1) and (;?),together with the simulation data, for the hvo different sizes of 
ratio studied. From figures (1) and (2) it can be seen that the ratio D 2 ( m 2 ) / D z ( m l )  
staru to increase rapidly with decreasing m2 which is in agreement with simulation 
results. This increase is found to be more pronounced for diameter ratio 0.1 than 
for OS, which is also in agreement with the simulation results. In our model this 
fact is related to the relative increase in jumping frequencies for the two diameter 
ratios. We find from table 1 that the relative increase in jumping frequency with 
decrease in mass is greater for diameter ratio 0.1 than for 0.5. Overall, we find that 
our results are in good agreement with the simulation data for the smaller tracer 
size. The results of our model start departing from the simulation results for the size 
ratio equal to 0.5 when the mass of the tracer is lower than 30% of that of solvent 
particles. However, for very small mass ratio, our model predict a sharp increase in 
the diffusion constant. The departure of our results from the simulation data may 
indicate the limitations of our model in which we do not fully account for highly 
correlated motions. 

8 " " 1 " / " " " 1 " " "  

T*=2.75 

p*=O.7-0.77 

m,=l. 

o " ' " " ' " " " ' " " ' I '  
0 5 10 15 20 

d o 2  

Figure 3. The ratio of tracer mer solvent dillusion mefficients Ds/Dt as a function 
of inverse size rdtio for equal masses. The lltenodynamic slale of the pure solvent is 
T' = 275 and n* =0.7 and the densiiy is increased from 0.70 10 0.77 as the Iracer 
size is decreases: solid circle$ MLI mulls: solid wiangles, theoretical mulls; . - . . se 
behaviour (equarion (I)). 

The results for the size dependence of D2(u2)/D2(ul)  are given in figure 3. 
The computer simulation results and thc prediction of SE relation (equation (1)) are 
also given in the figure for comparison. From figure 3 it can be seen that our model 
explains the levelling of the ratio D ? / D ,  for diameter ratio 02/u1 less than 0.1, in 
agreement with the simulation results. This saturation effect takes place in our model 
as a result of the levelling off in the jumping frequency below a size ratio of 0.1, as 
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1 

60.6 

20.4 I" 

0.2 7,' 
/' 2 v o'ai 0 '  0 / 0.1 log(o,/o,*) 0.2 0.3 

Figure 4. Variation of iog(DzlD1) willi l o g ( a l / q z )  for the lhemodynamic Stale of 
the same system as lhal of figure 3. ?he dolled line corresponds lo (20). 

can be seen from table 1. As has been stated earlier the sum rules coefficients Cp) 
and Cy) and hence jumping kequencies (7) are related to u12 which itself levels off. 
Therefore, we have attempted to have an empirical relation between ratios D, /D,  
and uI2/u1.  In view of this we have plotted log(D,/D,) versus log(u1/ulZ) in 
figure 4. The data points lie almost on a straight line which yields the relation 

The above emperical relation may be useful in further investigations and in modi- 
fication of the StokeEinstein relation for the tracer diffusion to make it valid for 
smaller and lighter tracer-solvent systems. 

t' 
Figure 5. "he vanillion of C( t )  with t. (= (c/ma2)-11z) for T'=a15, n. =0.90, 
02 fa1 = 05, for various mass ralios mz/ml marked along respective cutves. 
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t' 
Figure 6. The variation of C ( t )  with 1' (= (</nto2)--1/2) for T'=2.75. n' =0.70 . 
0.77. and nz2/ml = I for various oZ/cl marked along respective curves. 

Having found good agreement for the mass and size dependence of the self- 
diffusion coefficients, it is interesting to study the effect of mass and size of the tracer 
particle on the time evolution of the VACF, C(1). The effect of mass of the tracer on 
the time development on the normalized VACF C(t), obtained from (4b), is plotted 
in figure 5, for different mass ratios, marked on the curves, for 'F=O.75, n' =0.9 
and u.Ju, =OS. From figure 5, we find that decay of C( l )  becomes slower with 
the decrease in mass. Since, the self-diffusion coefficient D2(m2)  is proportional to 
the area under the respective culves and (1/m2), the dependence of the D,(m,) on 
m2 will be stronger than that which appeared in figure 5. The results for the size 
dependence of C ( t )  are given in figure (6). From this figure, it can be seen that 
C(t)  is strongly effected by decrease in size ratios marked along the curves. However, 
the difference in decay rate of C ( t )  become smaller as we go from size ratio (115 
to 0.1, which corresponds to the levelling off region. Here, it may be noted that 
self-diffusion Dz( U*) is only proportional to area under the corresponding curves in 
figure 6. Here, we would also like to point out that, although our model [lo] does 
not provide an accurate description of the time development of the VACF at long 
time it yields a qualitatively reasonable description of the mass and size dependence 
of C ( t )  as can be judged by the values of the self-diffusion coeficients. 

4. Summary and concluding remarks 

We have used a simple model for diffusional dynamics in a tracer-solvent system and 
have related its vibrational and jumping frequency parameters to sum rules describing 
the short-time behaviour of velocity autocorrelations in order to derive expressions for 
the selfdiffusion coefficients of the WO species which explicitly contain pair potentials 
and pair distribution functions. These expressions have allowed us to study the 
separate effects of the mass and size of the tracer molecule on its diffusivity. The 
numerical values that we have obtained are quite satisfactory for the ratio of tracer 
diffusivity of very different sizes and masses. In our model the difference in the self 
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diffusivity of the tracer of the different sizes and masses arises due to the difference in 
jumping frequencies which are related to tracer-solvent liquid structure. The levelling 
off the diffusivity for a very small size of tracer takes place due to its dependence 
on the solvent-solute diameter oI2. This levelling off is not explainable from the 
SE relation which relates D2/Dl to oz. Therefore, we expect that our work Will be 
useful in understanding and in modification of the SE relation for smaller and lighter 
tracer-sohent systems. 
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Appendix 

The triplet contribution to the fourth sum rule Cjl) is obtained from 

where the particle 1 is taken to be a solvent particle, while particles j and k may be 
of either species. Separating out the wrious choices of particles j and k and witing 
the averages in terms of distribution functions, we obtain 

where g3(T1,T2) are the triplet distribution functions and U,,, = d2U(r l  j/drl,dyla 
U,,, = d2U(r2j/dr2=dr2,. The expression for C$& is obtained from (AZ) by 
interchanging 1 and 2 in the superscripts. 

The integrals in (A2) can only be evaluated by using an approximate closure for 
the triplet correlation functions. 

A simple decoupling approximation on (Al), which amounts to neglecting the 
correlations between particles j and k ,  has been suggested in earlier work for static 
quadruplet correlation function in simple LennardJones fluids [12]. Using similar 
ideas we approximate (Al) as 

Separating out the possible choices of the particles j and k to solute or solvent 
particles, we obtain 
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We use (A4) to estimate the triplet correlation contribution to the fourth sum rule. 

K Tankeshwar and F Odd-Kaddour 
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