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Abstract. A simple model is used to calculate the tracer diffusion in a Lennard-Jones
tracer-solvent system. The influence of the size ratio between tracer and solvent, and of
their mass ratio on the tracer diffusivity is investigated. The adopted model, proposed
by Tankeshwar ef al, is based on the idea, put forward by Zwanzig, of separating the
configurational space of a fluid system into a vibrational part and a structural part. The
results offer an interpretation of the molecular dynamics data showing a levelling of the
self-diffusion coefficients for a sufficiently small size of the tracer. The levelling off is
explicitly related to the length parameter of tracer-solvent interaction. The calculated
values of the tracer diffusion coefficients for a large range of its size and mass values
are quite satisfactory as judged by comparison with simulation results.

1. Introduction

In binary fluid mixtures and molten salts the two species have generally different
diffusivity. This difference in the diffusivity can be attributed to the size ratio be-
tween the two species, their mass ratio, and to the interaction between them. From
experiments on real systems it is difficult to investigate the separate influence of these
parameters as they are changed simultaneously. Molecular dynamics (MD) calculation,
on the other hand allows a systematic investigation of the way each of them affects
the diffusivity. Recently, one of us has performed an extensive MD simulation for a
tracer—solvent system [1] to investigate the influence of the size ratio between tracer
and solvent molecules, their mass ratio on a small tracer diffusivity. The system was
made of 100 solvent molecules and 8 solute molecules interacting through Lennard-
Jones potentials. The main features of the MD runs for the influence of size ratio on
tracer diffusion is a strong positive deviation from the Stokes-Einstein (SE) relation,
which provides the following relation [1] for the the tracer diffusion

=2 M
1 Oz

where D and o are the diffusion coefficient and molecular diameter. The subscripts 1
and 2 represent the solvent and solute molecules respectively. It has been found that
D, increases as the tracer size decreases then levels off at a size-independent value.
This levelling off takes place for a size ratio o, /o, between 5 and 10; so for o, <
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0.1c, the tracer behaves essentially as a point-like particle in the external potential
created by the solvent molecules. On the other hand, for the mass dependence of the
diffusion constant, it has been found that D, increases considerably when the mass of
the tracer is very small compared to the solvent molecule’s mass. The enhancement
in D, increases with decrease in the size ratio. This behaviour is contrary to the
earlier prediction [2] of the weak mass dependence of the diffusion constant. The
aims of the present work is to investigate theoretically the influence of the size and
mass of the small tracer on its diffusivity and to demonstrate the invalidity of the SE
relation for small tracer.

As is well known, the self-diffusion coefficient is a macroscopic manifestation of
the autocorrelations of the single particle velocity in time. Much progress in under-
standing the dynamics of dense gases and liquids has been based on the Mori-Zwanzig
formalism, using phenomenological ansatzes and mode-coupling approximations for
the memory functions. The approach is extensively discussed by Boon and Yip [3]
and by Hansen and McDonald [4]. This line of approach has been followed [5,6] in
theoretical work on the mass dependence of the self-diffusion coeflicient of an isotope
in a Lennard-Jones (L) system with satisfactory results as judged by comparison with
computer simulation data; in particular, when the mass of the tracer was higher than
that of the solvent molecule’s mass. However, no similar studies have as yet been
reported on the tracer self-diffusion constant for sufficiently small size and mass of
the tracer molecules. The large deviation of the tracer diffusivity from the SE relation
is not yet understood.

In the computer simulation runs for the tracer diffusion, it has been suggested that
for a small tracer the diffusion process involves jumping motion in a locally nearly
frozen environment. Models of liquid-state diffusion through jumping processes have
also been developed for simple liquids. The model which we use in the present work
belongs to this class, since it invokes a combination of vibrational and jumping motions
of the particles. It is derived from an idea of Stillinger and Weber [7], as developed
and exploited by Zwanzig [8] and Mohanty [9] to derive transport coefficients in cold
densc Muids directly from the Green-Kubo time correlation formulas. The general
picture has been clearly stated in the work of Zwanzig {8]. The model assumes
that the configuration space of the many-body system is divided into ‘cells’, each
cell being associated with a local minimum on the potential energy hypersurface.
Some of these minima correspond to almost crystalline configurations, while others
correspond to liquid-like configurations. The configuration of the melt remains in
one of these minima, performing approximate harmonic vibrations about it, until it
finds a saddle point in the potential energy surface and jumps to another cell. The
effects of a cell jump are (i) to rearrange the equilibrium positions of the particles in
some subvolume V* and (ii) to interrupt the oscillations within it, so that the motions
in V* before and after the jump are uncorrelated. Similar ideas have been used by
Tankeshwar, Singla and Pathak [10] to develop a simple mode! for the calculation of
self-diffusion of classical fluids. The model when applied to L1 fluids, one-component
plasma and Yukawa fluids, provides good results for the diffusion constant over large
ranges of values of system temperature and density, as judged from the comparison
with simulation results. Recently, the model has been extended to be applicd to the
two-component molten-salt system by Tankeshwar and Tosi {11], and was found to
predict successfully the ratios of self-diffusion coefficients of the two ionic species in
superionic conductor and normal melts.

The main result of our application of the above model to a tracer-solvent system is
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to explicitly relate the difference in self-diffusion coefficients of the tracer of different
sizes to the ‘partial tracer—solvent’ liquid structure factor. The levelling of the tracer
diffusion constant at very small sizes is found to appear as result of its dependence
on the tracer-solvent diameter, g;, = (o, + 0,)/2 and not solely on the tracer
diameter o,. Our numerical calculations involve the use of pair potential and of pair
distribution functions obtained from MD simulations, so that the pair potentials are
in fact the essential input. Our calculations are successful in predicting the ratio of
self-diffusion coefficients for the tracer of different sizes and masses in agreement
with simulation results.

The layout of the paper is briefly as follows. In section 2 we develop the model
to be used in the calculation of self-diffusion coefficients. The results are presented
and discussed in section 3. Section 4 gives a short summary and some concluding
remarks.

2. Theory

We consider a solvent-solute system consisting of N, solvent molecules with mass
m, and diameter o, and N, solute molecules with mass m, and diameter o,, in a
volume V. The self-diffusion coefficients D, and D, are given by the Green-Kubo
formulae

D, = kBTf C,(t) dt (2a)
and
D, = ‘“BT/ Cy(1) dt (2b)

where C,(t} and C,(t) are the velocity auto-correlation functions (VACFs) of solvent
and solute molecules. These are, respectively, given by

Ny
(1) = 5 Y (1) O () (3a)

LAFTEN

and

Cylt) = Z(v‘”(t 2P0 /(1)) (3b)

“!“

where v{"(¢) and »{?(1) are the velocities of the ith solvent and solute molecule at
time ¢, respectively. The angular brackets in (3) represent the ensemble average.
The realization of Zwanzig’s model recalled in section 1 introduces a spectrum
of oscillation frequencies to reduce the sum over cocrdinates in (3) 10 a sum over
normal modes localized in the various subvolumes 17* and having a time dependence
of the form cos(wt). One also introduces a waiting-time distribution for celi jumps
destroying coherence in any subvolume V*, that we take of the form [10] sech(z/r).
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With these approximation we obtain, in general, for the velocity auto-correlation
function (VACF):

C(t) = % Z cos(wt)sech(t/7).

We approximate the frequency spectrum by Einstein frequencies w; and w, for solvent
and solute molecules respectively, and correspondmgly introduce jumping frequencies
! and +;!. With these approximations (3) give

Cdt):cos(wﬁ)sech(%) e (4a)

C,(t) = COS(UJ?t)SCCh(Ti)- (48)

Substituting (4) in (2) we obtain expressions for the self-diffusion constants given by

kT % T
D, = 2B~ h 5
1= m, D) T 5ec ( ‘*’17'1) (3a)
and
D, = %:“.g 2sech(ﬂw.,'r¢,) (5b)

The approximations used in deriving (4) are ad hoc and arguable, though plausible
{8,10]. An advantage of using the same frequencies for all the solvent or solutes
molecules is that the parameters w, , and 7, , can be estimated from the microscopic
sum rules satisfied by the VACF. On comparing the short-time expansion of the inte-
grals in (4) and (5) with the exact short-time expansion of the VACF for solvent and
solute molecules, given by

C(t) =1 - Co(t?/21) + C (¥ /a) + - -- ©)
we obtain the following relations

s (1) (C(U)

= T e e e e ()
and

5(Ci)? - ¢t

(——)C—(r——--- ®

Similar expressnons relate w, and 7, to the coefficients C‘ *) and C'm in the short-
time expansion of C,(t). As can be seen from (4)-(8), lf C, = 02 then D = 0,
nnplymg perfect crystalline behaviour. On the other hand, for C, > 502 -diffusion
is gas-like and no backscattering process is present.
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In order to calculate the self-diffusion constants from (4) and (5) we need the
sum rules expressions for C, and C,. They are given [6,11] by the following:

(1 _ M1 i1 4 Mo 12
) = 75 [ar g (UL + 52 [ dr (U2 ©
and
n
cih =23 [ar gunitr+ 22 (2 + 1) [ar autivsy o

where C'y, represents the two-body contribution to the fourth sum rule. The deriva-
tion of the triplet contribution to this sum rule and its simplified form are given in
the appendix. In (9) and (10) n, is the number density of the solvent molecules,
gy1(r) and g,,(r) are the partial solvent-solvent and solvent-solute radial distribu-
tion functions, U!(r) and U'?(r) are the the corresponding pair potentials and the

notation
_d (dU(»)
Vap = 5;( daro ) (1)

has been used, with the convention of summation over repeated Cartesian index o
The second and fourth sum rule for the solute, ng} and C'f), follow by interchanging
the indices 1 and 2 in (9) and {10). Clearly, each sum rule contains a contribution
from like particles and a contribution from unlike particles. The expressions (9) and
(10} are general and are applicable to any binary system of any partial concentration.
However, in the present case we are interested in a system of infinitly dilute solution,
where tracer molecules interact very weakly with each other than with the solvent
molecules. For such a system the above equations reduce to

i) = &/dr ryULL 12
2 ™, g(r) (12)
2n 3
=23 [ ar g(ruth) 13
1
and
N
C§2) m.,_/dr g12(mUL2 (14)
and
(2) _ Py f 5 4 1242
Ciy = mg(ml * 2) / dr 912(r)(Usza)”- (15)

From the above expressions for CE,?) and Cf) one finds that these sum rules and
hence w, and 7, are implicitly related to the solute-solvent diameter ¢, = (o, +
o,)/2 through the solvent-solute interaction and g,,(r). In the next section we
proceed to evaluate these sum rules and hence the self-diffusion coefficients.
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3. Calculation and results

The inputs for the numerical calculation of the frequency sum rules of the VACF are
the interatomic potentials and the partial radial distribution functions. We have used
the LJ potential adopted by Ould-Kaddour and Barrat [1] in their (MD) work, together
with the structure factors that they obtained by simulation. The calculated sum rules
coefficients for the tracer are given in table 1, for various size and mass ratios. The
LJ interaction energy ¢ was kept constant for all molecules, and the units of energy,
length and mass were respectively ¢, o, and m,. The thermodynamic state of the
system is therefore specified by the reduced temperature T* = kg7 /¢ and reduced
density n* = nol. We have also tried to estimate the tracer—tracer contribution to
the sum rules, we find that these contributions are always less than one percent of
the tracer-solvent contribution.

Table I. Sum-rules coefficients Céz) and Ciﬂ of the VACF and self-diffusion cocfficients,
D for the tracer molecule as a function of the size ratio o3 /oy and mass ratio my fm;.
DYy are MD simulation results; also given are the jumping frequencies L,

T n* ozfo ma[my D+ Do C'E,QJ lD'SCﬁ?) !

0.75 0.90 1.00 1.00 0.035 0.026 296,65 247 11.58
075 0.90 0.50 1.00 0.101 0.08 244,89 4.27 19.36
0.75 0.90 0.50 0.70 0.107 0.08 349.84 | . 1.50 21,18
0.75 0.90 0.50 .50 0.116 0.09 480.36 12.59 23.13
0.75 0.90 0.50 .40 0122 0.10 612.23 19.25 25.16
0.75 0.90 0.50 (.30 0.132 0.09 816.30 32.02 27.87
0.75 0.90 0.50 0.10 Q.213 0.13 2406.50 ° 254.80 45,23
0.75 0.90 0.56 0.05 0.281 0.14 4793.80 943.80 61.02
0.75 0.92 0.10 1.00 0.283 0.33 150.45 552 29.66
0.75 092 0.1¢ 0.70 (1.324 0.37 204.09 9.00 32,43
0.75 0.92 010 0.50 0.356 0.35 286.28 15.60 35.93
0.75 092 0.10 0.40 C 037 0.44 362.57 23.03 38.70
0.75 0.92 010 025 0.445 0.54 575,20 51.38 45,71
0.75 0.92 0.10 .10 0.626 0.70 1497.10 ~ 297.10 67.73
0.75 092 0.10 005 0.359 0.78 3129.40 1353.00 100.13
275 0.70 1.00 1.00 0,235 0.24 403.99 9.01 21.37
275 Q.77 0.15 1.00 1.159 1.01 23172 23.69 49,98
295 Q.77 0.10 1.00 1.314 [.32 228.04 28.60 55.48
215 Q.77 0.08 .00 1.387 1.28 222.55 . 29.50 57.08
275 077 0.05 100 1.474 1.45 02.81 25,20 55.28

In the first two sets of data in table 1, The tracer mass is varied for two fixed size
ratios a,/0, = 0.5 and o,/c, = 0.1. The thermodynamic state of the pure solvent
was chosen to be near triple point (T = 0.75, n* = 0.85). When reducing the tracer
size the total density had to be increased slightly, in order to keep the solvent-solvent
radial distribution function and the solvent diffusion coefficient constant. In the third
set of data, the tracer size is decreased keeping it mass equal to the sclvent mass; the
pure solvent was chosen to be a supercritical fluid (7™ = 2.75,n* = 0.7). As stated

earlier, the total density was slightly increased. The calculation of Cf,"’) includes the
triplet contribution which is discussed in the appendix. From table 1, it can be seen

that both C, and C, are functions of size and mass. The mass dependence of ng)
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and Cf) for a fixed size of tracer can exactly be derived from (12) and (14) and from
(13) and (15), respectively, yielding the following relations:

myC5 oy, my) = my C§(oy, my) (16)
and
myCi oy, my) = tm, (14 my /my)C (04, my). 7

On the other hand, for a fixed mass the size dependences of Cf) and Cff) are found
to obey the following relations:

CP(o3.ms) = (015/0,)C5P (01, my) (18)
and
(2) (2) ;
Cy'(og,my) > (0,/0,5)Cy (0, m,). (19)

The above expressions are approximate and can be obtained from (12)-(15) by as-
suming that the variation of g(r/eo,) with /o, remains unchanged with change of
o, 0 o4, which i quite reasonable approximation. The two latter expressions (18)
and (19) show that for a sufficiently small tracer size, C‘g"} and Cff} will become
almost size independent as o, = (o, + 0,}/2 acquires almost a constant value for
sufficiently small value of ¢, compared t0 o,. Therefore, one finds that the sum-
rule coefficients are explicitly dependent on ,, and hence will be the self-diffusion
constant.

3-5 L] I T 7 l L l L I T 17 I I_ 3 -I T ¥ I LI |.| T l LS l T 177 I 1_
3k T=0.75 > . - T'=0.75 ]
—_ - p =092 3o L P.=0-9 J
E2s[ o/0=01 | g [ 0:/0,=05 ]
ot . 1 = -4 1
= ] o ]
S LF 18 %t ]
of - - - R
£ 7L 1E . :
] o - N
=) N b 1.5 - =
15F ' 4 e :
¥ ., ] C R i
- - N - L] -
i[ * s -—1 1 .
-I 11 I | -] ] Lol 3 [ L1 I | ] ] k] -I | - I 11 1 I 1 4 I 111 I | - | I l-
0 02 04 06 08 1 0 02 04 06 08 1
m,/m, mz/m,

Figure 1. Tracer diffusion coefficients as a function Figure 2. Same as in figure 1, but for the smaller
of mass ratio for a size ratio op/0; = 0.5. The size ratio oz /oy =0.1.

system temperature and density are T* = 0.75,

n* =09: solid circles, MD results; solid triangles,

theoretical work: - - - -, Stokes—Einstein behaviour

(equation (1}).
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The tracer self-diffusion coefficient D, is calculated from {5), using the numerical
values for the sum rules from table 1. The calculated values of the self-diffusion
coefficients along with MD values are also given in table 1. From table 1, we find that
the absolute values of the self-diffusion are quite reasonable except for the mass ratios
m,/m, which are less than 0.4 corresponding to first set of data (7" = 0.75,n* =
0.9 and o,/c, = 0.5). The mass dependence of the self-diffusion is plotted in
figures (1) and (2),together with the simulation data, for the two different sizes of
ratio studied. From figures (1) and (2) it can be seen that the ratio D,(my)/ Dy(my)
starts to increase rapidly with decreasing m, which is in agreement with simulation
results. This increase i found to be more pronounced for diameter ratio 0.1 than
for 0.5, which is also in agreement with the simulation results. In our model this
fact is related to the relative increase in jumping frequencies for the two diameter
ratios. We find from table 1 that the relative increase in jumping frequency with
decrease in mass is greater for diameter ratio 0.1 than for 0.5. Overall, we find that
our results are in good agreement with the simulation data for the smaller tracer
size. The resuits of our model start departing from the simulation results for the size
ratio equal to 0.5 when the mass of the tracer is lower than 30% of that of solvent
particles. However, for very small mass ratio, our model predict a sharp increase in
the diffusion constant. The departure of our results from the simulation data may
indicate the limitations of our model in which we do not fully account for highly
correlated motions.

8 I LA |f.,1 T T T Ty oo ]
6 - R $ ]
- ;_," [ . B
ol e ..'}; * :
g 4f P -
oF :
a8 1
- A T*=2.75 -
= I_."' N
2 ‘;‘ p*=0.7-0.77 -
.-'; m2=1_ -
I 4
0 TSNS EVIE ETEE TR SN A SN B R A
0 5 .10 15 20
01/,

Figure 3. The ratio of tracer over solvent diffusion coefficients D/ Dy as a function
of inverse size ratio for equal masses, The thermodynamic state of the pure solvent is
T* = 275 and n* =0.7 and the density is increased from 0.7¢ to 0.77 as the tracer
size is decreases: solid circles, MD results; solid triangles, theoretical results; - - - - SE
behaviour (equation (1}).

The results for the size dependence of D,(o,)/D.(o,) are given in figure 3.
The computer simulation results and the prediction of SE relation (equation (1)) are
also given in the figure for comparison. From figure 3 it can be seen that our model
explains the levelling of the ratio D,/ D, for diameter ratio o, /o, less than 0.1, in
agreement with the simulation results. This saturation effect takes place in our model
as a result of the levelling off in the jumping frequency below a size ratio of 0.1, as
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Figure 4. Variation of log(D2 /D)) with log(o) fo12) for the thermodynamic state of
the same system as that of figure 3. The dotted line corresponds to (20).

can be seen from table 1. As has been stated earlier the sum rules coefficients ng)
and 6‘52) and hence jumping frequencies (7) are related to o, which itself levels off.
Therefore, we have attempted to have an empirical relation between ratios D, /D,
and o,,/o,. In view of this we have plotted log( D,/ D,) versus log(c,/o,,) in
figure 4. The data points lic almost on a straight line which yields the relation

D o \ 288
2 [ L . (20
D, B

The above emperical relation may be useful in further investigations and in modi-

fication of the Stokes-Einstein relation for the tracer diffusion to make it valid for
smaller and lighter tracer—solvent systems.

c(t)

a8

t.

Figure 5. The variation of C(t) with t* (= (¢/mo®)~1/?) for T*=0.75, n* =090,
ozfoy = 0.5, for various mass ralios mq /m; marked along respective curves.
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c(t)

Figure 6. The variation of C{¢) with t* (= {¢/ma?)~1/?) for T*=2.75, n* =0.70 -
0.77, and m3/m; = | for various o2 /oy marked afong respective curves,

Having found good agreement for the mass and size dependence of the self-
diffusion coefficients, it is interesting to study the effect of mass and size of the tracer
particle on the time evolution of the vacr, C(t). The effect of mass of the tracer on
the time development on the normalized VACF C'(t), obtained from (4b), is plotted
in figure 5, for different mass ratios, marked on the curves, for T =0.75, n* =0.9
and o,/0, =0.5. From figure 5, we find that decay of C{(t} becomes slower with
the decrease in mass. Since, the self-diffusion coefficient D.{ms) is proportional to
the area under the respective curves and (1/m,), the dependence of the D,(m,) on
m, will be stronger than that which appeared in figure 5. The results for the size
dependence of C(t) are given in figure (6). From this figure, it can be seen that
C(t) is strongly effected by decrease in size ratios marked along the curves. However,
the difference in decay rate of C'(1) become smaller as we go from size ratio 0.15
to 0.1, which corresponds to the levelling off region. Here, it may be noted that
self-diffusion D,(o,} is only proportional to area under the corresponding curves in
figure 6. Here, we would also like to point out that, although our model [10] does
not provide an accurate description of the time development of the VACF at long
time it yields a qualitatively reasonable description of the mass and size dependence
of C(t) as can be judged by the values of the self-diffusion coefficients.

4. Summary and concluding remarks

We have used a simple model for diffusional dynamics in a tracer-solvent system and
have related its vibrational and jumping frequency parameters to sum rules describing
the short-time behaviour of velocity autocorrelations in order to derive expressions for
the seif-diffusion coefficients of the two species which explicitly contain pair potentials
and pair distribution functions. These expressions have allowed us to study the
separate effects of the mass and size of the tracer molecule on its diffusivity. The
numerical values that we have obtained are quite satisfactory for the ratio of tracer
diffusivity of very different sizes and masses. In our model the difference in the self
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diffusivity of the tracer of the different sizes and masses arises due to the difference in
jumping frequencies which are related to tracer—solvent liquid structure. The levelling
off the diffusivity for a very small size of tracer takes place due to its dependence
on the solvent-solute diameter o,,. This levelling off is not explainable from the
SE relation which relates D, /D, to o,. Therefore, we expect that our work will be
useful in understanding and in modification of the SE relation for smaller and lighter
tracer-solvent systems.
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Appendix

The triplet contribution to the fourth sum rule C‘f,” is obtained from

oW = 1 <d2U(T‘1J)d2U('r‘1k)> (A1)
Pl dry,dr,, dr,.d

lex

where the particle 1 is taken to be a sclvent particle, while particles 7 and & may be
of either species. Separating out the various choices of particles 7 and & and writing
the averages in terms of distribution functions, we obtain

n? ns
Ciz.'g) = -T.;'l_lf_/ drldr'_’ QS(rl’Tq)Ull.l-aU'}al:a -:'2 /[ drldrz 93(r137'0)U11£a U2z:a
o

2n n2

+

/ dr d'i"o 93(7'15"0)UL:aU21;a (AZ)

1ro = d2U(r) [drydry,
is obtained from (AZ) by

where gs(r,,r,) are the triplet distribution functions and U
Uy,o = d?U(r,)/dr,,dr,,. The expression for C‘E?s]
interchanging 1 and 2 in the superscripts.

The integrals in (A2) can only be evaluated by using an approximate closure for
the triplet correlation functions.

A simple decoupling approximation on (Al), which amounts to neglecting the
correlations between particles § and &, has been suggested in earlier work for static
quadruplet correlation function in simple Lennard-Jones fluids [12]. Using similar

ideas we approximate (Al) as
<d2U(TIL)> (AB)

d2U(r,;)
(1) 1y
C"fa) 2mzz<dr1xdrm>§ drydr,,

Separating out the possible choices of the particles j and % to solute or solvent
particles, we obtain

2
cidy = Hey. (A4)
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We use {(Ad4) to estimate the triplet correlation contribution to the fourth sum rule.
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